Computational complexity of solving polynomial differential equations over unbounded domains

Amaury Pouly ${ }^{\star} \dagger$ Daniel Graça ${ }^{\dagger, \ddagger}$

* Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France
${ }^{\dagger}$ CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal \ddagger SQIG /Instituto de Telecomunicações, Lisbon, Portugal

July 8, 2013

Outline

(1) Introduction

- Motivation
- Existing results
- Practice
- Theory
- Goal and result
(2) Complexity of solving PIVP
- Crash course on numerical methods
- Euler method
- Taylor method
- Basic algorithm
- Enhanced algorithm
(3) Conclusion

Problem statement

We want to solve:

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where

$$
\begin{aligned}
& y: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}
$$

Solve ?

Problem statement

We want to solve:

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where

$$
\begin{aligned}
& y: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}
$$

Solve ? \triangleright Compute $y_{i}(t)$ with arbitrary precision for any $t \in I$

Problem statement

We want to solve:

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where

$$
\begin{aligned}
& y: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}
$$

Solve ? \triangleright Compute $y_{i}(t)$ with arbitrary precision for any $t \in I$

Example

$$
\left\{\begin{array} { l }
{ c ^ { \prime } (t) = - s (t) } \\
{ s ^ { \prime } (t) = c (t) } \\
{ x ^ { \prime } (t) = 2 c (t) s (t) x (t) ^ { 2 } }
\end{array} \quad \left\{\begin{array}{l}
c(0)=1 \\
s(0)=0 \\
x(t)=\frac{1}{2}
\end{array}\right.\right.
$$

Problem statement

We want to solve:

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where

$$
\begin{aligned}
& y: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}
$$

Solve ? \triangleright Compute $y_{i}(t)$ with arbitrary precision for any $t \in I$

Example

$$
\left\{\begin{array} { l }
{ c ^ { \prime } (t) = - s (t) } \\
{ s ^ { \prime } (t) = c (t) } \\
{ x ^ { \prime } (t) = 2 c (t) s (t) x (t) ^ { 2 } }
\end{array} \quad \left\{\begin{array} { l }
{ c (0) = 1 } \\
{ s (0) = 0 } \\
{ x (t) = \frac { 1 } { 2 } }
\end{array} \leadsto \left\{\begin{array}{l}
c(t)=\cos (t) \\
s(t)=\sin (t) \\
x(t)=\frac{1}{1+\cos (t)^{2}}
\end{array}\right.\right.\right.
$$

Motivation

- Theoretical complexity of solving differential equations
- Functions generated by the General Purpose Analog Computer (GPAC)
- Solve $\boldsymbol{y}^{\prime}=f(y)$ where f is elementary (composition of polynomials, exponential,logarithms, (inverse) trigonometric functions, ...)

Motivation

- Theoretical complexity of solving differential equations
- Functions generated by the General Purpose Analog Computer (GPAC)
- Solve $y^{\prime}=f(y)$ where f is elementary (composition of polynomials, exponential,logarithms, (inverse) trigonometric functions, ...)

Motivation

- Theoretical complexity of solving differential equations
- Functions generated by the General Purpose Analog Computer (GPAC)
- Solve $y^{\prime}=f(y)$ where f is elementary (composition of polynomials, exponential,logarithms, (inverse) trigonometric functions, ...)

Motivation

- Theoretical complexity of solving differential equations
- Functions generated by the General Purpose Analog Computer (GPAC)
- Solve $y^{\prime}=f(y)$ where f is elementary (composition of polynomials, exponential,logarithms, (inverse) trigonometric functions, ...)

Example

$$
\left\{\begin{array} { l }
{ y ^ { \prime } = \operatorname { s i n } (y) } \\
{ y (0) = 1 }
\end{array} \quad \xrightarrow [u = \operatorname { c o s } (y)] { z = \operatorname { s i n } (y) } \quad \left\{\begin{array} { l }
{ y ^ { \prime } = z } \\
{ z ^ { \prime } = u } \\
{ u ^ { \prime } = - z }
\end{array} \quad \left\{\begin{array}{l}
y(0)=1 \\
z(0)=\sin (1) \\
u(0)=\cos (1)
\end{array}\right.\right.\right.
$$

Practical

Definition (Folklore)

- Numerical method: $t_{i+1}=t_{i}+h$ and $x_{i+1}=f\left(x_{0}, \ldots, x_{i} ; h\right)$
- Local error: $\delta_{i}^{h}=\left\|y\left(t_{i}\right)-x_{i}\right\|_{\infty}$
- Order: maximum ω such that $\delta_{n}^{h}=\mathcal{O}\left(h^{\omega+1}\right)$ as $h \rightarrow 0$

Practical

Definition (Folklore)

- Numerical method: $t_{i+1}=t_{i}+h$ and $x_{i+1}=f\left(x_{0}, \ldots, x_{i} ; h\right)$
- Local error: $\delta_{i}^{h}=\left\|y\left(t_{i}\right)-x_{i}\right\|_{\infty}$
- Order: maximum ω such that $\delta_{n}^{h}=\mathcal{O}\left(h^{\omega+1}\right)$ as $h \rightarrow 0$

Theorem (Folklore)

- Euler method has order 1
- Runge-Kutta 4 (RK4) has order 4
- $\forall \omega$, there exist methods of order ω (RK ω, Taylor)

Practical

Definition (Folklore)

- Numerical method: $t_{i+1}=t_{i}+h$ and $x_{i+1}=f\left(x_{0}, \ldots, x_{i} ; h\right)$
- Local error: $\delta_{i}^{h}=\left\|y\left(t_{i}\right)-x_{i}\right\|_{\infty}$
- Order: maximum ω such that $\delta_{n}^{h}=\mathcal{O}\left(h^{\omega+1}\right)$ as $h \rightarrow 0$

Theorem (Folklore)

- Euler method has order 1
- Runge-Kutta 4 (RK4) has order 4
- $\forall \omega$, there exist methods of order ω (RK ω, Taylor)

Practical

Definition (Folklore)

- Numerical method: $t_{i+1}=t_{i}+h$ and $x_{i+1}=f\left(x_{0}, \ldots, x_{i} ; h\right)$
- Local error: $\delta_{i}^{h}=\left\|y\left(t_{i}\right)-x_{i}\right\|_{\infty}$
- Order: maximum ω such that $\delta_{n}^{h}=\mathcal{O}\left(h^{\omega+1}\right)$ as $h \rightarrow 0$

Theorem (Folklore)

- Euler method has order 1
- Runge-Kutta 4 (RK4) has order 4
- $\forall \omega$, there exist methods of order ω (RK ω, Taylor)

Practical

Definition (Folklore)

- Numerical method: $t_{i+1}=t_{i}+h$ and $x_{i+1}=f\left(x_{0}, \ldots, x_{i} ; h\right)$
- Local error: $\delta_{i}^{h}=\left\|y\left(t_{i}\right)-x_{i}\right\|_{\infty}$
- Order: maximum ω such that $\delta_{n}^{h}=\mathcal{O}\left(h^{\omega+1}\right)$ as $h \rightarrow 0$

Theorem (Folklore)

- Euler method has order 1
- Runge-Kutta 4 (RK4) has order 4
- $\forall \omega$, there exist methods of order ω (RK ω, Taylor)

Remark

- Difficult choice of h
- Quite efficient in practice

Practical (Handwaving)

Definition (Folklore)

- Adaptive method: $t_{i+1}=t_{i}+h_{i}$ and $x_{i+1}=f\left(x_{0}, \ldots, x_{i} ; h\right)$
- Local error: $\delta_{i}=\left\|y\left(t_{i}\right)-x_{i}\right\|_{\infty}$
- Error estimate: $e_{i} \geqslant \delta_{i}, \rightarrow h_{i}=g\left(e_{i}, x, t\right)$

Idea

- Big steps when smooth and small error estimate
- Small steps when stiff and big error estimate

Remark

- Unknown complexity
- Very efficient in practice

And so ?

Don't we know everything ?

And so ?

Don't we know everything? Not quite!

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{ll}
y: I \rightarrow \mathbb{R}^{n} \\
p: \text { vector of polynomials }
\end{array}\right.
$$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{l}
y: I \rightarrow \mathbb{R}^{n} \\
p: \text { vector of polynomials }
\end{array}\right.
$$

- Issue \#1: order ω, step size h

$$
\text { local error }=\mathcal{O}\left(h^{\omega+1}\right)
$$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{l}
y: I \rightarrow \mathbb{R}^{n} \\
p: \text { vector of polynomials }
\end{array}\right.
$$

- Issue \#1: order ω, step size h

$$
\text { local error } \leqslant K h^{\omega+1}
$$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{l}
y: I \rightarrow \mathbb{R}^{n} \\
\\
p: \text { vector of polynomials }
\end{array}\right.
$$

- Issue \#1: order ω, step size h

$$
\text { local error } \leqslant K h^{\omega+1} \quad K \text { depends on } y \text { and } I!!
$$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{l}
y: I \rightarrow \mathbb{R}^{n} \\
p: \text { vector } 0
\end{array}\right.
$$

- Issue \#1: order ω, step size h

$$
\text { local error } \leqslant K h^{\omega+1} \quad K \text { depends on } y \text { and } I!!
$$

Example: Euler method (Simplified)

local error at step $i \leqslant \frac{1}{2} h^{2}\left\|p^{\prime}\left(y_{i}\right)\right\|_{\infty}$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
& y^{\prime}=p(y) \\
& y\left(t_{0}\right)=y_{0} \text { where } \quad \\
& \quad y: l \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}\right.
$$

- Issue \#1: order ω, step size h

$$
\text { local error } \leqslant K h^{\omega+1} \quad K \text { depends on } y \text { and } I!!
$$

Example: Euler method (Simplified)

$$
\text { local error } \leqslant \frac{1}{2} h^{2}\left\|p^{\prime}\left(y_{i}\right)\right\|_{\infty} \Rightarrow \mathcal{O}(1)=\max _{t \in I}\left\|p^{\prime}(y(t))\right\|_{\infty} ?
$$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
& y^{\prime}=p(y) \\
& y\left(t_{0}\right)=y_{0} \text { where } \\
& y: I \subseteq[0,1] \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}\right.
$$

- Issue \#1: order ω, step size h local error $\leqslant K h^{\omega+1} \quad K$ depends on y and $I!!$

Example: Euler method (Simplified)

$$
\text { local error } \leqslant \frac{1}{2} h^{2}\left\|p^{\prime}\left(y_{i}\right)\right\|_{\infty} \Rightarrow \mathcal{O}(1)=\max _{t \in I}\left\|p^{\prime}(y(t))\right\|_{\infty} ?
$$

Yes because $[0,1]$ is a compact set...

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{l}
y: I \rightarrow \mathbb{R}^{n} \\
\\
p: \text { vector of polynomials }
\end{array}\right.
$$

- Issue \#1: order ω, step size h
local error $\leqslant K h^{\omega+1} \quad K$ depends on y and $I!!$
Example: Typical assumptions
- $I \subseteq[0,1]$
- p is a lipschitz function

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
& y^{\prime}=p(y) \\
& y\left(t_{0}\right)=y_{0} \text { where } \quad \\
& \quad y: l \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}\right.
$$

- Issue \#1: unrealistic assumptions

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
& y^{\prime}=p(y) \\
& y\left(t_{0}\right)=y_{0} \text { where } \quad \\
& \quad y: l \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}\right.
$$

- Issue \#1: unrealistic assumptions

Idea: rescale!

If $I=[a, b]$, write $z(t)=y(a+(b-a) t)$, then:

$$
z:[0,1] \rightarrow \mathbb{R}^{n} \quad \sim \quad\left\{\begin{array}{r}
z^{\prime}=(b-a) p(z) \\
z\left(t_{0}^{\prime}\right)=z_{0}
\end{array}\right.
$$

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
& y^{\prime}=p(y) \\
& y\left(t_{0}\right)=y_{0} \text { where } \\
& y: l \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{aligned}\right.
$$

- Issue \#1: unrealistic assumptions

Idea: rescale!

If $I=[a, b]$, write $z(t)=y(a+(b-a) t)$, then:

$$
z:[0,1] \rightarrow \mathbb{R}^{n} \quad \sim \quad\left\{\begin{aligned}
& z^{\prime}=(b-a) p(z) \\
& z\left(t_{0}^{\prime}\right)=z_{0}
\end{aligned}\right.
$$

Still need lipschitz condition, now depends on p, a and b.

And so ?

Don't we know everything ? Not quite!

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } \quad \begin{array}{ll}
y: l \rightarrow \mathbb{R}^{n} \\
& p: \text { vector of polynomials }
\end{array}\right.
$$

- Issue \#1: unrealistic assumptions
- Issue \#2: rescaling doesn't help

Computability

Theorem (Pieter Collins, Daniel Graça)

Let $I \subseteq \mathbb{R}$ open set, $t_{0} \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=f(y(t))
$$

If y_{0} is a computable real, p has computable coefficients and f is computable then y is a computable function.

Computability

Theorem (Pieter Collins, Daniel Graça)

Let $I \subseteq \mathbb{R}$ open set, $t_{0} \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=f(y(t))
$$

If y_{0} is a computable real, p has computable coefficients and f is computable then y is a computable function.

Remark

- f computable $\Rightarrow f$ continuous \Rightarrow unique solution
- We have to assume the existence over I because finding I is undecidable.
- Absolutely terrible complexity

Complexity

Theorem (ICALP 2012)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, Y, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t)) \text { and }\|y(t)\|_{\infty} \leqslant Y
$$

If y_{0} is a polytime computable real and p has polytime computable coefficients, then one can compute x such that $\|x-y(u)\|_{\infty} \leqslant 2^{-\mu}$ in time $\operatorname{poly}(\mu, u, Y)$.

Complexity

Theorem (ICALP 2012)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, Y, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t)) \text { and }\|y(t)\|_{\infty} \leqslant Y
$$

If y_{0} is a polytime computable real and p has polytime computable coefficients, then one can compute x such that $\|x-y(u)\|_{\infty} \leqslant 2^{-\mu}$ in time $\operatorname{poly}(\mu, u, Y)$.

Complexity

Theorem (ICALP 2012)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, Y, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t)) \text { and }\|y(t)\|_{\infty} \leqslant Y
$$

If y_{0} is a polytime computable real and p has polytime computable coefficients, then one can compute x such that $\|x-y(u)\|_{\infty} \leqslant 2^{-\mu}$ in time $\operatorname{poly}(\mu, u, Y)$.

Remark

- Impossible to bound complexity without Y or something similar
- If $I \subseteq[0,1]$, this is "polytime" in poly (μ)
- Very inefficient in practice

Goal

- Complexity of practical adaptive algorithms ?
- Theoretical power of adaptiveness ?

Goal

- Complexity of practical adaptive algorithms $? \Rightarrow$ Too ambitious
- Theoretical power of adaptiveness ?Yes!

Our result

Theorem (CCA 2013)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, Y, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

If y_{0} is a polytime computable real and p has polytime computable coefficients, then one can compute x such that $\|x-y(u)\|_{\infty} \leqslant 2^{-\mu}$ in time poly (μ, u, Z) where

$$
Z \approx \int_{t_{0}}^{u} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi
$$

Our result

Theorem (CCA 2013)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, Y, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

If y_{0} is a polytime computable real and p has polytime computable coefficients, then one can compute x such that $\|x-y(u)\|_{\infty} \leqslant 2^{-\mu}$ in time poly (μ, u, Z) where

$$
Z \approx \int_{t_{0}}^{u} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi
$$

Remark

- Always better than our previous result
- Doesn't need an a priori bound on the solution

Example: why is this better?

Example

$$
f_{\lambda, u}(t)=\lambda e^{-\lambda^{2}(u-t)^{2}}
$$

Example: why is this better ?

Example

$$
f_{\lambda, u}(t)=\lambda e^{-\lambda^{2}(u-t)^{2}}
$$

Previous method (ICALP 2012)
Complexity: $\operatorname{poly}\left(t, I_{\lambda}\right)$

$$
I_{\lambda}=\max _{t \in I}\|y(t)\|_{\infty}=\lambda
$$

Example: why is this better?

Example

$$
f_{\lambda, u}(t)=\lambda e^{-\lambda^{2}(u-t)^{2}}
$$

Previous method (ICALP 2012)

Complexity: $\operatorname{poly}\left(t, I_{\lambda}\right)$

$$
I_{\lambda}=\max _{t \in I}\|y(t)\|_{\infty}=\lambda
$$

Adaptive method (CCA 2013)
Complexity: $\operatorname{poly}\left(t, K_{\lambda}\right)$

$$
K_{\lambda}=\int_{t \in I}\|y(t)\|_{\infty} d t=\mathcal{O}(1)
$$

Euler method

Idea

$$
y(t+h) \approx y(t)+h y^{\prime}(t) \approx y(t)+h p(y(t))
$$

Euler method

Idea

$$
y(t+h) \approx y(t)+h y^{\prime}(t) \approx y(t)+h p(y(t))
$$

- Discretise: make N time steps

Euler method

Idea

$$
y(t+h) \approx y(t)+h y^{\prime}(t) \approx y(t)+h p(y(t))
$$

- Discretise: make N time steps
- Do a linear approximation at each step

Euler method

Idea

$$
y(t+h) \approx y(t)+h y^{\prime}(t) \approx y(t)+h p(y(t))
$$

- Discretise: make N time steps
- Do a linear approximation at each step

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+h p\left(x_{n}\right) \quad t=N h+t_{0}
$$

Euler method

Idea

$$
y(t+h) \approx y(t)+h y^{\prime}(t) \approx y(t)+h p(y(t))
$$

- Discretise: make N time steps
- Do a linear approximation at each step

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+h p\left(x_{n}\right) \quad t=N h+t_{0}
$$

Doesn't work very well!

Euler method (2)

Taylor method

Idea

$$
y(t+h) \approx y(t)+\sum_{i=1}^{\omega} h^{i} y^{(i)}(t) \quad y^{(i)}(t)=\operatorname{poly}_{i}(y(t))
$$

Taylor method

Idea

$$
y(t+h) \approx y(t)+\sum_{i=1}^{\omega} h^{i} y^{(i)}(t) \quad y^{(i)}(t)=\operatorname{poly}_{i}(y(t))
$$

- Discretise: make N time steps

Taylor method

Idea

$$
y(t+h) \approx y(t)+\sum_{i=1}^{\omega} h^{i} y^{(i)}(t) \quad y^{(i)}(t)=\operatorname{poly}_{i}(y(t))
$$

- Discretise: make N time steps
- Do a ω-th order approximation at each step

Taylor method

Idea

$$
y(t+h) \approx y(t)+\sum_{i=1}^{\omega} h^{i} y^{(i)}(t) \quad y^{(i)}(t)=\operatorname{poly}_{i}(y(t))
$$

- Discretise: make N time steps
- Do a ω-th order approximation at each step

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+\sum_{i=1}^{\omega} h^{i} \operatorname{poly}_{i}\left(x_{n}\right) \quad t=N h+t_{0}
$$

Taylor method

Idea

$$
y(t+h) \approx y(t)+\sum_{i=1}^{\omega} h^{i} y^{(i)}(t) \quad y^{(i)}(t)=\operatorname{poly}_{i}(y(t))
$$

- Discretise: make N time steps
- Do a ω-th order approximation at each step

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+\sum_{i=1}^{\omega} h^{i} \operatorname{poly}_{i}\left(x_{n}\right) \quad t=N h+t_{0}
$$

Works much better for $\omega \geqslant 3$. How to choose h and ω ?

Adaptive variable-order Taylor method

Idea

Change the time step and the order at each step.

Adaptive variable-order Taylor method

Idea

Change the time step and the order at each step.

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+\sum_{i=1}^{\omega_{n}} h_{n}^{i} \operatorname{poly}_{i}\left(x_{n}\right) \quad t=\sum_{i=1}^{N} h_{i}+t_{0}
$$

where

Adaptive variable-order Taylor method

Idea

Change the time step and the order at each step.

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+\sum_{i=1}^{\omega_{n}} h_{n}{ }^{i} \text { poly }_{i}\left(x_{n}\right) \quad t=\sum_{i=1}^{N} h_{i}+t_{0}
$$

where

$$
h_{n}=\frac{1}{\operatorname{poly}\left(\left\|x_{n}\right\|_{\infty}\right)} \quad \omega_{n}=\log _{2} \operatorname{poly}\left(\left\|x_{n}\right\|_{\infty}, K, \frac{1}{\varepsilon}\right) \quad N=\operatorname{poly}(K)
$$

$\varepsilon=$ output precision $\quad K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(u)\|_{\infty}\right) d u$

Adaptive variable-order Taylor method

Idea

Change the time step and the order at each step.

$$
x_{0}=y_{0} \quad x_{n+1}=x_{n}+\sum_{i=1}^{\omega_{n}} h_{n}{ }^{i} \text { poly }_{i}\left(x_{n}\right) \quad t=\sum_{i=1}^{N} h_{i}+t_{0}
$$

where

$$
\begin{gathered}
h_{n}=\frac{1}{\operatorname{poly}\left(\left\|x_{n}\right\|_{\infty}\right)} \quad \omega_{n}=\log _{2} \operatorname{poly}\left(\left\|x_{n}\right\|_{\infty}, K, \frac{1}{\varepsilon}\right) \quad N=\operatorname{poly}(K) \\
\varepsilon=\text { output precision } \quad K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(u)\|_{\infty}\right) d u
\end{gathered}
$$

Remark

We need to know $\int_{t_{0}}^{t} \operatorname{poly}\left(\|y(u)\|_{\infty}\right) d u$

Complexity

Theorem (Complexity)

If y_{0} and p are polytime computable, $\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)$ has running time poly $\left(u-t_{0}, K, \mu\right)$.

Complexity

Theorem (Complexity)

If y_{0} and p are polytime computable, $\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)$ has running time poly $\left(u-t_{0}, K, \mu\right)$.

Proof ideas

- Show that derivatives of y can be computed quickly from p
- Tedious computations

A crucial property

Theorem (Algorithm is correct)
Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, K, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

There exist an algorithm \mathcal{A} such that
$K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi \Rightarrow\left\|\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)-y(u)\right\|_{\infty} \leqslant e^{-\mu}$

A crucial property

Theorem (Algorithm is correct)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, K, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

There exist an algorithm \mathcal{A} such that

$$
K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi \Rightarrow\left\|\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)-y(u)\right\|_{\infty} \leqslant e^{-\mu}
$$

Proof ideas

- Bound dependency in the initial condition
- Tedious error analysis

A crucial property

Theorem (Algorithm is correct)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, K, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

There exist an algorithm \mathcal{A} such that

$$
K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi \Rightarrow\left\|\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)-y(u)\right\|_{\infty} \leqslant e^{-\mu}
$$

Remark

What if we give \mathcal{A} a K which is not big enough ?

A crucial property

Theorem (Algorithm is correct)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, K, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

There exist an algorithm \mathcal{A} such that

$$
K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi \Rightarrow\left\|\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)-y(u)\right\|_{\infty} \leqslant e^{-\mu}
$$

Remark

What if we give \mathcal{A} a K which is not big enough ?
Theorem (Algorithm is complete)
\mathcal{A} can detect if K is not big enough.

A crucial property

Theorem (Algorithm is correct)

Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, K, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

There exist an algorithm \mathcal{A} such that

$$
K \geqslant \int_{t_{0}}^{t} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi \Rightarrow\left\|\mathcal{A}\left(t_{0}, y_{0}, p, K, u, \mu\right)-y(u)\right\|_{\infty} \leqslant e^{-\mu}
$$

Theorem (Algorithm is complete)

\mathcal{A} can detect if K is not big enough.

Proof ideas

- Clever bound on the number of steps

Enhanced algorithm

Idea

Start with $K=1$. While \mathcal{A} fails, double K.

Enhanced algorithm

Idea

Start with $K=1$. While \mathcal{A} fails, double K.
Theorem (CCA 2013)
Let $I \subseteq \mathbb{R}$ open set, $t_{0}, u \in I, y_{0} \in \mathbb{R}^{n}, y: I \rightarrow \mathbb{R}^{n}, Y, \mu>0$. Assume

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad \forall t \in I, y^{\prime}(t)=p(y(t))
$$

If y_{0} is a polytime computable real and p has polytime computable coefficients, then one can compute x such that $\|x-y(u)\|_{\infty} \leqslant 2^{-\mu}$ in time $\operatorname{poly}(\mu, \boldsymbol{u}, \boldsymbol{Z})$ where

$$
Z \approx \int_{t_{0}}^{u} \operatorname{poly}\left(\|y(\xi)\|_{\infty}\right) d \xi
$$

Conclusion

- Adaptive algorithm to solve polynomial initial value problem - Proven complexity - Theoretical power of adaptiveness

Conclusion

- Adaptive algorithm to solve polynomial initial value problem
- Proven complexity
- Theoretical power of adaptiveness

Conclusion

- Adaptive algorithm to solve polynomial initial value problem
- Proven complexity
- Theoretical power of adaptiveness

Future Work

- General study of explicit methods
- Study implicit methods
- Lower bound on complexity of solving initial value problem
- Lower bound on adaptive algorithms

Future Work

- General study of explicit methods
- Study implicit methods
- Lower bound on complexity of solving initial value problem - Lower bound on adaptive algorithms

Future Work

- General study of explicit methods
- Study implicit methods
- Lower bound on complexity of solving initial value problem
- Lower bound on adaptive algorithms

Future Work

- General study of explicit methods
- Study implicit methods
- Lower bound on complexity of solving initial value problem
- Lower bound on adaptive algorithms

Questions ?

- Do you have any questions ?

Hidden table

Method	Max. Order At Point u	Guaranteed Hint	Number of steps		
Previous (with hint I)*	$\mathcal{O}\left(\log \frac{l}{\varepsilon}\right)$	$\sup _{u \in\left[t_{0}, t\right]}\left(1+\\|y(u)\\|_{\infty}\right)^{k-1}$	21		
Fixed ω (with hint $I)^{\dagger}$	$\omega=\frac{1}{\lambda}$	$I \geqslant K_{\lambda}$	$1+(3 I)^{\frac{\omega+1}{\omega-1}}\left(\frac{k+\lambda}{\varepsilon}\right)^{\frac{1}{1-\lambda}}$		
Fixed ω (enhanced) ${ }^{\dagger}$	$\omega=\frac{1}{\lambda}$	Not Applicable	$\begin{gathered} r+\left(3 \cdot 2^{r+1}\right)^{\frac{\omega+1}{\omega-1}}\left(\frac{k+\lambda}{\varepsilon}\right)^{\frac{1}{1-\lambda}} \\ \text { where } r=\left\lceil\log _{2} K_{\lambda}\right\rceil \end{gathered}$		
Variable (with hint I)	$\mathcal{O}\left(\log \frac{K\\|y(u)\\|_{\infty}}{\varepsilon}\right)$	$I \geqslant K_{0}$	$1+12(k+1) /$		
Variable (enhanced)	$\mathcal{O}\left(\log \frac{K_{0}\\|y(u)\\|_{\infty}}{\varepsilon}\right)$	Not Applicable	$\begin{gathered} r+12(k+1) 2^{r+1} \\ \text { where } r=\left\lceil\log _{2} K_{0}\right\rceil \end{gathered}$		
where $\quad K_{\lambda}=\int_{t_{0}}^{t} k \Sigma p\left(1+\varepsilon+\\|y(u)\\|_{\infty}\right)^{k-1+\lambda} d u$					

*This algorithm only works if the given hint is greater than the guaranteed hint, the result is otherwise undefined.
${ }^{\dagger}$ This algorithm can detect if the hint is not large enough.

