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Introduction Motivation

Problem statement

We want to solve: {
y ′ = p(y)

y(t0)= y0

where
y : I ⊆ R→ Rn

p: vector of polynomials

Solve ?
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y(t0)= y0

where
y : I ⊆ R→ Rn

p: vector of polynomials

Solve ? BCompute yi(t) with arbitrary precision for any t ∈ I
Example 

c′(t)= −s(t)
s′(t)= c(t)
x ′(t)= 2c(t)s(t)x(t)2


c(0)= 1
s(0)= 0
x(t)= 1

2
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s′(t)= c(t)
x ′(t)= 2c(t)s(t)x(t)2


c(0)= 1
s(0)= 0
x(t)= 1

2

;


c(t)= cos(t)
s(t)= sin(t)
x(t)= 1

1+cos(t)2
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Introduction Motivation

Motivation

Theoretical complexity of solving differential equations
Functions generated by the General Purpose Analog Computer
(GPAC)
Solve y ′ = f (y) where f is elementary (composition of
polynomials, exponential,logarithms, (inverse) trigonometric
functions, ...)
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Introduction Motivation

Motivation

Theoretical complexity of solving differential equations
Functions generated by the General Purpose Analog Computer
(GPAC)
Solve y ′ = f (y) where f is elementary (composition of
polynomials, exponential,logarithms, (inverse) trigonometric
functions, ...)

Example

{
y ′ = sin(y)

y(0)= 1
z=sin(y)−−−−−−→
u=cos(y)


y ′= z
z ′= u
u′= −z


y(0)= 1
z(0)= sin(1)
u(0)= cos(1)
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Introduction Existing results

Practical
Definition (Folklore)

Numerical method: ti+1 = ti + h and xi+1 = f (x0, . . . , xi ;h)
Local error: δi

h = ‖y(ti)− xi‖∞
Order: maximum ω such that δh

n = O
(
hω+1) as h→ 0

t

y(t)

x0
t0

x1

t1 h

x2

t2

δ2
x3

t3

δ3

x4

t4

δ4
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hω+1) as h→ 0

Theorem (Folklore)
Euler method has order 1
Runge-Kutta 4 (RK4) has order 4
∀ω, there exist methods of order ω (RKω, Taylor)
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Practical

Definition (Folklore)

Numerical method: ti+1 = ti + h and xi+1 = f (x0, . . . , xi ;h)
Local error: δi

h = ‖y(ti)− xi‖∞
Order: maximum ω such that δh

n = O
(
hω+1) as h→ 0

Theorem (Folklore)
Euler method has order 1
Runge-Kutta 4 (RK4) has order 4
∀ω, there exist methods of order ω (RKω, Taylor)

Remark
Difficult choice of h
Quite efficient in practice
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Introduction Existing results

Practical (Handwaving)

Definition (Folklore)

Adaptive method: ti+1 = ti + hi and xi+1 = f (x0, . . . , xi ;h)
Local error: δi = ‖y(ti)− xi‖∞
Error estimate: ei > δi ,→ hi = g(ei , x , t)

Idea
Big steps when smooth and small error estimate
Small steps when stiff and big error estimate

Remark
Unknown complexity
Very efficient in practice
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Introduction Existing results

And so ?

Don’t we know everything ?
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Introduction Existing results

And so ?

Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I → Rn

p: vector of polynomials

Issue #1: order ω, step size h

local error = O
(

hω+1
)
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Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I → Rn

p: vector of polynomials

Issue #1: order ω, step size h

local error 6 Khω+1 K depends on y and I !!

Example: Euler method (Simplified)

local error at step i 6
1
2

h2 ∥∥p′(yi)
∥∥
∞
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Introduction Existing results

And so ?

Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I ⊆ [0,1]→ Rn

p: vector of polynomials

Issue #1: order ω, step size h

local error 6 Khω+1 K depends on y and I !!

Example: Euler method (Simplified)

local error 6
1
2

h2 ∥∥p′(yi)
∥∥
∞⇒ O (1) = max

t∈I

∥∥p′(y(t))
∥∥
∞?

Yes because [0,1] is a compact set...
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Introduction Existing results

And so ?

Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I → Rn

p: vector of polynomials

Issue #1: order ω, step size h

local error 6 Khω+1 K depends on y and I !!

Example: Typical assumptions

I ⊆ [0,1]
p is a lipschitz function
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Introduction Existing results

And so ?

Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I → Rn

p: vector of polynomials

Issue #1: unrealistic assumptions

Idea: rescale!
If I = [a,b], write z(t) = y(a + (b − a)t), then:

z : [0,1]→ Rn ;
{

z ′ = (b − a)p(z)
z(t ′0)= z0

A. Pouly, D. Graça (LIX, FCT) Complexity of solving PIVP July 8, 2013 4 / 18



Introduction Existing results

And so ?

Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I → Rn

p: vector of polynomials

Issue #1: unrealistic assumptions

Idea: rescale!
If I = [a,b], write z(t) = y(a + (b − a)t), then:

z : [0,1]→ Rn ;
{

z ′ = (b − a)p(z)
z(t ′0)= z0

Still need lipschitz condition, now depends on p, a and b.
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Introduction Existing results

And so ?

Don’t we know everything ? Not quite!{
y ′ = p(y)

y(t0)= y0
where

y : I → Rn

p: vector of polynomials

Issue #1: unrealistic assumptions
Issue #2: rescaling doesn’t help
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Introduction Existing results

Computability

Theorem (Pieter Collins, Daniel Graça)

Let I ⊆ R open set, t0 ∈ I, y0 ∈ Rn, y : I → Rn, f : Rn → Rn. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = f (y(t))

If y0 is a computable real, p has computable coefficients and f is com-
putable then y is a computable function.
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Computability

Theorem (Pieter Collins, Daniel Graça)

Let I ⊆ R open set, t0 ∈ I, y0 ∈ Rn, y : I → Rn, f : Rn → Rn. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = f (y(t))

If y0 is a computable real, p has computable coefficients and f is com-
putable then y is a computable function.

Remark
f computable⇒ f continuous⇒ unique solution
We have to assume the existence over I because finding I is
undecidable.
Absolutely terrible complexity
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Introduction Existing results

Complexity

Theorem (ICALP 2012)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,Y , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t)) and ‖y(t)‖∞ 6 Y

If y0 is a polytime computable real and p has polytime computable coef-
ficients, then one can compute x such that ‖x − y(u)‖∞ 6 2−µ in time
poly(µ,u,Y ).
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Introduction Existing results

Complexity

Theorem (ICALP 2012)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,Y , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t)) and ‖y(t)‖∞ 6 Y

If y0 is a polytime computable real and p has polytime computable coef-
ficients, then one can compute x such that ‖x − y(u)‖∞ 6 2−µ in time
poly(µ,u,Y ).

Remark
Impossible to bound complexity without Y or something similar
If I ⊆ [0,1], this is “polytime” in poly(µ)
Very inefficient in practice
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Introduction Goal and result

Goal

Complexity of practical adaptive algorithms ?
Theoretical power of adaptiveness ?
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Theoretical power of adaptiveness ?Yes!

A. Pouly, D. Graça (LIX, FCT) Complexity of solving PIVP July 8, 2013 7 / 18



Introduction Goal and result

Our result

Theorem (CCA 2013)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,Y , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

If y0 is a polytime computable real and p has polytime computable coef-
ficients, then one can compute x such that ‖x − y(u)‖∞ 6 2−µ in time
poly(µ,u,Z ) where

Z ≈
∫ u

t0
poly(‖y(ξ)‖∞)dξ
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Introduction Goal and result

Our result

Theorem (CCA 2013)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,Y , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

If y0 is a polytime computable real and p has polytime computable coef-
ficients, then one can compute x such that ‖x − y(u)‖∞ 6 2−µ in time
poly(µ,u,Z ) where

Z ≈
∫ u

t0
poly(‖y(ξ)‖∞)dξ

Remark
Always better than our previous result
Doesn’t need an a priori bound on the solution
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Introduction Goal and result

Example: why is this better ?

Example

fλ,u(t) = λe−λ
2(u−t)2

t

1
λ

λ
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Example

fλ,u(t) = λe−λ
2(u−t)2

t

1
λ

λ

Previous method (ICALP 2012)

Complexity: poly(t , Iλ)

Iλ = max
t∈I
‖y(t)‖∞ = λ

A. Pouly, D. Graça (LIX, FCT) Complexity of solving PIVP July 8, 2013 9 / 18



Introduction Goal and result

Example: why is this better ?

Example

fλ,u(t) = λe−λ
2(u−t)2

t

1
λ

λ

Previous method (ICALP 2012)

Complexity: poly(t , Iλ)

Iλ = max
t∈I
‖y(t)‖∞ = λ

Adaptive method (CCA 2013)

Complexity: poly(t ,Kλ)

Kλ =

∫
t∈I
‖y(t)‖∞ dt = O (1)
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Complexity of solving PIVP Crash course on numerical methods

Euler method

Idea

y(t + h) ≈ y(t) + hy ′(t) ≈ y(t) + hp(y(t))
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Euler method

Idea

y(t + h) ≈ y(t) + hy ′(t) ≈ y(t) + hp(y(t))

Discretise: make N time steps
Do a linear approximation at each step

x0 = y0 xn+1 = xn + h p(xn) t = Nh + t0
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Complexity of solving PIVP Crash course on numerical methods

Euler method

Idea

y(t + h) ≈ y(t) + hy ′(t) ≈ y(t) + hp(y(t))

Discretise: make N time steps
Do a linear approximation at each step

x0 = y0 xn+1 = xn + h p(xn) t = Nh + t0

Doesn’t work very well !
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Complexity of solving PIVP Crash course on numerical methods

Euler method (2)
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Complexity of solving PIVP Crash course on numerical methods

Taylor method

Idea

y(t + h) ≈ y(t) +
ω∑

i=1

hiy (i)(t) y (i)(t) = polyi(y(t))
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Taylor method

Idea

y(t + h) ≈ y(t) +
ω∑

i=1

hiy (i)(t) y (i)(t) = polyi(y(t))

Discretise: make N time steps
Do a ω-th order approximation at each step
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Complexity of solving PIVP Crash course on numerical methods

Taylor method

Idea

y(t + h) ≈ y(t) +
ω∑

i=1

hiy (i)(t) y (i)(t) = polyi(y(t))

Discretise: make N time steps
Do a ω-th order approximation at each step

x0 = y0 xn+1 = xn +
ω∑

i=1

hi polyi(xn) t = Nh + t0
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Complexity of solving PIVP Crash course on numerical methods

Taylor method

Idea

y(t + h) ≈ y(t) +
ω∑

i=1

hiy (i)(t) y (i)(t) = polyi(y(t))

Discretise: make N time steps
Do a ω-th order approximation at each step

x0 = y0 xn+1 = xn +
ω∑

i=1

hi polyi(xn) t = Nh + t0

Works much better for ω > 3. How to choose h and ω ?
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Complexity of solving PIVP Basic algorithm

Adaptive variable-order Taylor method

Idea
Change the time step and the order at each step.
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Idea
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hn
i polyi(xn) t =

N∑
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where
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Adaptive variable-order Taylor method

Idea
Change the time step and the order at each step.

x0 = y0 xn+1 = xn +
ωn∑
i=1

hn
i polyi(xn) t =

N∑
i=1

hi + t0

where

hn =
1

poly(‖xn‖∞)
ωn = log2 poly

(
‖xn‖∞ ,K ,

1
ε

)
N = poly(K )

ε = output precision K >
∫ t

t0
poly(‖y(u)‖∞)du
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Complexity of solving PIVP Basic algorithm

Adaptive variable-order Taylor method
Idea
Change the time step and the order at each step.

x0 = y0 xn+1 = xn +
ωn∑
i=1

hn
i polyi(xn) t =

N∑
i=1

hi + t0

where

hn =
1

poly(‖xn‖∞)
ωn = log2 poly

(
‖xn‖∞ ,K ,

1
ε

)
N = poly(K )

ε = output precision K >
∫ t

t0
poly(‖y(u)‖∞)du

Remark

We need to know
∫ t

t0
poly(‖y(u)‖∞)du
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Complexity of solving PIVP Basic algorithm

Complexity

Theorem (Complexity)

If y0 and p are polytime computable, A(t0, y0,p,K ,u, µ) has running
time poly(u − t0,K , µ).
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Complexity of solving PIVP Basic algorithm

Complexity

Theorem (Complexity)

If y0 and p are polytime computable, A(t0, y0,p,K ,u, µ) has running
time poly(u − t0,K , µ).

Proof ideas
Show that derivatives of y can be computed quickly from p
Tedious computations
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Complexity of solving PIVP Basic algorithm

A crucial property

Theorem (Algorithm is correct)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,K , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

There exist an algorithm A such that

K >
∫ t

t0
poly(‖y(ξ)‖∞)dξ ⇒ ‖A(t0, y0,p,K ,u, µ)− y(u)‖∞ 6 e−µ
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A crucial property

Theorem (Algorithm is correct)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,K , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

There exist an algorithm A such that

K >
∫ t

t0
poly(‖y(ξ)‖∞)dξ ⇒ ‖A(t0, y0,p,K ,u, µ)− y(u)‖∞ 6 e−µ

Proof ideas
Bound dependency in the initial condition
Tedious error analysis
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Complexity of solving PIVP Basic algorithm

A crucial property

Theorem (Algorithm is correct)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,K , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

There exist an algorithm A such that

K >
∫ t

t0
poly(‖y(ξ)‖∞)dξ ⇒ ‖A(t0, y0,p,K ,u, µ)− y(u)‖∞ 6 e−µ

Remark
What if we give A a K which is not big enough ?
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Complexity of solving PIVP Basic algorithm

A crucial property

Theorem (Algorithm is correct)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,K , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

There exist an algorithm A such that

K >
∫ t

t0
poly(‖y(ξ)‖∞)dξ ⇒ ‖A(t0, y0,p,K ,u, µ)− y(u)‖∞ 6 e−µ

Remark
What if we give A a K which is not big enough ?

Theorem (Algorithm is complete)

A can detect if K is not big enough.
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Complexity of solving PIVP Basic algorithm

A crucial property

Theorem (Algorithm is correct)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,K , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

There exist an algorithm A such that

K >
∫ t

t0
poly(‖y(ξ)‖∞)dξ ⇒ ‖A(t0, y0,p,K ,u, µ)− y(u)‖∞ 6 e−µ

Theorem (Algorithm is complete)

A can detect if K is not big enough.

Proof ideas
Clever bound on the number of steps
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Complexity of solving PIVP Enhanced algorithm

Enhanced algorithm

Idea
Start with K = 1. While A fails, double K .
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Complexity of solving PIVP Enhanced algorithm

Enhanced algorithm

Idea
Start with K = 1. While A fails, double K .

Theorem (CCA 2013)

Let I ⊆ R open set, t0,u ∈ I, y0 ∈ Rn, y : I → Rn,Y , µ > 0. Assume

y(t0) = y0 and ∀t ∈ I, y ′(t) = p(y(t))

If y0 is a polytime computable real and p has polytime computable coef-
ficients, then one can compute x such that ‖x − y(u)‖∞ 6 2−µ in time
poly(µ,u,Z ) where

Z ≈
∫ u

t0
poly(‖y(ξ)‖∞)dξ
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Conclusion

Conclusion

Adaptive algorithm to solve polynomial initial value problem
Proven complexity
Theoretical power of adaptiveness
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Conclusion

Future Work

General study of explicit methods
Study implicit methods
Lower bound on complexity of solving initial value problem
Lower bound on adaptive algorithms
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Questions ?

Do you have any questions ?
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Hidden table

Method Max. Order
At Point u Guaranteed Hint Number of steps

Previous (with hint I)∗ O
(

log
I

ε

) kΣp(t − t0)×
sup

u∈[t0,t]
(1 + ‖y(u)‖∞)k−1 2I

Fixed ω (with hint I)† ω = 1
λ

I > Kλ 1 + (3I)
ω+1
ω−1

( k + λ

ε

) 1
1−λ

Fixed ω (enhanced)† ω = 1
λ

Not Applicable r +
(

3 · 2r+1
) ω+1
ω−1

( k + λ

ε

) 1
1−λ

where r = dlog2 Kλe

Variable (with hint I) O
(

log
K ‖y(u)‖∞

ε

)
I > K0 1 + 12(k + 1)I

Variable (enhanced) O
(

log
K0 ‖y(u)‖∞

ε

)
Not Applicable r + 12(k + 1)2r+1

where r = dlog2 K0e

where Kλ =

∫ t

t0
kΣp(1 + ε + ‖y(u)‖∞)k−1+λdu

∗This algorithm only works if the given hint is greater than the guaranteed hint, the
result is otherwise undefined.
†This algorithm can detect if the hint is not large enough.
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